Gold nanoparticles on mesoporous SiO(2)-coated magnetic Fe(3)O(4)spheres: a magnetically separatable catalyst with good thermal stability.

نویسندگان

  • Huan Liu
  • Chao Lin
  • Zhen Ma
  • Hongbo Yu
  • Shenghu Zhou
چکیده

Fe3O4 spheres with an average size of 273 nm were prepared in the presence of CTAB by a solvothermal method. The spheres were modified by a thin layer of SiO2, and then coated by mesoporous SiO2 (m-SiO2) films, by using TEOS as a precursor and CTAB as a soft template. The resulting m-SiO2/Fe3O4 spheres, with an average particle size of 320 nm, a high surface area (656 m2/g), and ordered nanopores (average pore size 2.5 nm), were loaded with gold nanoparticles (average size 3.3 nm). The presence of m-SiO2 coating could stabilize gold nanoparticles against sintering at 500 °C. The material showed better performance than a conventional Au/SiO2 catalyst in catalytic reduction of p-nitrophenol with NaBH4. It can be separated from the reaction mixture by a magnet and be recycled without obvious loss of catalytic activity. Relevant characterization by XRD, TEM, N2 adsorption-desorption, and magnetic measurements were conducted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new dual immunoassay for tumor markers based on chemiluminescence signal amplification by magnetic mesoporous silica and enzyme modified gold nanoparticles.

A sensitive dual immunoassay was proposed for the determination of carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) based on signal amplification. Monoclonal antibodies immobilized on magnetic mesoporous silica particles (Fe(3)O(4)/SiO(2)) were prepared as the primary probe. Horseradish peroxidase (HRP) labeled antibodies co-coated with HRP on gold nanoparticles (AuNPs) were used as the...

متن کامل

Fe3O4@mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli reaction.

A magnetic nanoparticle conjugated mesoporous nanocatalyst (Fe(3)O(4)@mesoporous SBA-15) with a high surface area has been synthesized by chemical conjugation of magnetite (Fe(3)O(4)) nanoparticles with functionalized mesoporous SBA-15. Functionalized mesoporous SBA-15 containing surface carboxyl and amino groups was synthesized via the thiol-ene click reaction of cysteine hydrochloride and vin...

متن کامل

Carbonic anhydrase immobilized on encapsulated magnetic nanoparticles for CO2 sequestration.

Bovine carbonic anhydrase (BCA) was covalently immobilized onto OAPS (octa(aminophenyl)silsesquioxane)-functionalized Fe(3)O(4)/SiO(2) nanoparticles by using glutaraldehyde as a spacer. The Fe(3)O(4) nanoparticles were coated with SiO(2), onto which was grafted OAPS, and the product was characterized using SEM, TEM, XRD, IR, X-ray photoelectron spectroscopy (XPS), and magnetometer analysis. The...

متن کامل

Boric Acid-Functionalized Fe3O4@SiO2 as a Novel Superparamagnetically Recoverable Nano Catalyst for Mukaiyama-Aldol Reaction

We have reported the fabrication of boric acid incorporated into surface of magnetite nanoparticles. The catalyst was characterized using spectroscopic, magnetic and thermal techniques (FT-IR, SEM, XRD, ICP, VSM and TGA). It catalyzed Mukaiyama aldol reaction of a ketene silyl acetal type nucleophile ((1-methoxy-2-methylprop-1-enyloxy) trimethylsilane), and various aldehydes (aromatic, aliphati...

متن کامل

Magnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives

The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2) nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES) with magnetic graphene oxide (Fe3O4-GO). It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO alo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 18 11  شماره 

صفحات  -

تاریخ انتشار 2013